A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces
نویسندگان
چکیده
We present a new high-order, local meshfree method for numerically solving reaction diffusion equations on smooth surfaces of codimension 1 embedded in Rd. The novelty of the method is in the approximation of the Laplace–Beltrami operator for a given surface using Hermite radial basis function (RBF) interpolation over local node sets on the surface. This leads to compact (or implicit) RBF generated finite difference (RBF-FD) formulas for the Laplace–Beltrami operator, which gives rise to sparse differentiation matrices. The method only requires a set of (scattered) nodes on the surface and an approximation to the surface normal vectors at these nodes. Additionally, the method is based on Cartesian coordinates and thus does not suffer from any coordinate singularities. We also present an algorithm for selecting the nodes used to construct the compact RBF-FD formulas that can guarantee the resulting differentiation matrices have desirable stability properties. The improved accuracy and computational cost that can be achieved with this method over the standard (explicit) RBF-FD method are demonstrated with a series of numerical examples. We also illustrate the flexibility and general applicability of the method by solving two different reaction-diffusion equations on surfaces that are defined implicitly and only by point clouds.
منابع مشابه
A Radial Basis Function (rbf) Compact Finite
We present a new high-order, local meshfree method for numerically solving reaction 5 diffusion equations on smooth surfaces of co-dimension one embedded in Rd. The novelty of the 6 method is in the approximation of the Laplace-Beltrami operator for a given surface using Hermite 7 radial basis function (RBF) interpolation over local node sets on the surface. This leads to compact 8 (or implicit...
متن کاملA Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces
In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scatt...
متن کاملRadial Basis Function-generated Finite Differences: A Mesh-free Method for Computational Geosciences
Radial basis function generated finite differences (RBF-FD) is a mesh-free method for numerically solving partial differential equations (PDEs) that emerged in the last decade and has shown rapid growth in the last few years. From a practical standpoint, RBF-FD sprouted out of global RBF methods, which have shown exceptional numerical qualities in terms of accuracy and time stability for numeri...
متن کاملA Radial Basis Function (RBF)-Finite Difference Method for the Simulation of Reaction-Diffusion Equations on Stationary Platelets within the Augmented Forcing Method
We present a computational method for solving the coupled problem of chemical transport in a fluid (blood) with binding/unbinding of the chemical to/from cellular (platelet) surfaces in contact with the fluid, and with transport of the chemical on the cellular surfaces. The overall framework is the augmented forcing point method (AFM) (L. Yao and A.L. Fogelson, Simulations of chemical transport...
متن کاملA Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 39 شماره
صفحات -
تاریخ انتشار 2017